Зачем метрику качества регрессии возводить в квадрат?
Речь идёт о среднеквадратичной ошибке (Mean Squared Error, MSE). От средней абсолютной ошибки (Mean Absolute Error, MAE) она отличается тем, что в ней разница между предсказанным и истинным значением возводится в квадрат. Но зачем это нужно?
▪️MSE сильнее штрафует за большие ошибки. У этого есть как плюсы, так и минусы. Если мы действительно очень не хотим получать большие ошибки, то квадратичный штраф за них очень полезен. Но если в тестовых данных есть выбросы, то использовать MSE становится менее удобно.
Зачем метрику качества регрессии возводить в квадрат?
Речь идёт о среднеквадратичной ошибке (Mean Squared Error, MSE). От средней абсолютной ошибки (Mean Absolute Error, MAE) она отличается тем, что в ней разница между предсказанным и истинным значением возводится в квадрат. Но зачем это нужно?
▪️MSE сильнее штрафует за большие ошибки. У этого есть как плюсы, так и минусы. Если мы действительно очень не хотим получать большие ошибки, то квадратичный штраф за них очень полезен. Но если в тестовых данных есть выбросы, то использовать MSE становится менее удобно.
#junior #middle
BY Библиотека собеса по Data Science | вопросы с собеседований
Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283
A project of our size needs at least a few hundred million dollars per year to keep going,” Mr. Durov wrote in his public channel on Telegram late last year. “While doing that, we will remain independent and stay true to our values, redefining how a tech company should operate.
The global forecast for the Asian markets is murky following recent volatility, with crude oil prices providing support in what has been an otherwise tough month. The European markets were down and the U.S. bourses were mixed and flat and the Asian markets figure to split the difference.The TSE finished modestly lower on Friday following losses from the financial shares and property stocks.For the day, the index sank 15.09 points or 0.49 percent to finish at 3,061.35 after trading between 3,057.84 and 3,089.78. Volume was 1.39 billion shares worth 1.30 billion Singapore dollars. There were 285 decliners and 184 gainers.
Библиотека собеса по Data Science | вопросы с собеседований from in